Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Database
Language
Document Type
Year range
1.
Front Immunol ; 13: 1010140, 2022.
Article in English | MEDLINE | ID: covidwho-2121437

ABSTRACT

The emerging SARS-CoV-2 virus has affected the entire world with over 600 million confirmed cases and 6.5 million deaths as of September 2022. Since the beginning of the pandemic, several variants of SARS-CoV-2 have emerged, with different infectivity and virulence. Several studies suggest an important role of neutrophils in SARS-Cov-2 infection severity, but data about direct activation of neutrophils by the virus is scarce. Here, we studied the in vitro activation of human neutrophils by SARS-CoV-2 variants of concern (VOCs). In our work, we show that upon stimulation with SARS-Cov-2 infectious particles, human healthy resting neutrophils upregulate activation markers, degranulate IL-8, produce Reactive Oxygen Species and release Neutrophil Extracellular Traps. Neutrophil activation was dependent on TLR7/8 and IRF3/STING. We then compared the activation potential of neutrophils by SARS-CoV-2 variants and showed a significantly increased activation by the Delta variant and a decreased activation by the Omicron variant as compared to the initial strain. In this study, we demonstrate that the SARS-Cov-2 virus can directly activate neutrophils in COVID-19 and that the different VOCs had differences in neutrophil activation intensity that mirror the differences of clinical severity. These data highlight the need to address neutrophil-virus interactions as a potential target for therapeutic intervention in SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Neutrophils
3.
Front Cell Infect Microbiol ; 11: 792202, 2021.
Article in English | MEDLINE | ID: covidwho-1595214

ABSTRACT

Since its emergence in China at the end of 2019, SARS-CoV-2 has rapidly spread across the world to become a global public health emergency. Since then, the pandemic has evolved with the large worldwide emergence of new variants, such as the Alpha (B.1.1.7 variant), Beta (B.1.351 variant), and Gamma (P.1 variant), and some other under investigation such as the A.27 in France. Many studies are focusing on antibody neutralisation changes according to the spike mutations, but to date, little is known regarding their respective replication capacities. In this work, we demonstrate that the Alpha variant provides an earlier replication in vitro, on Vero E6 and A549 cells, than Beta, Gamma, A.27, and historical lineages. This earlier replication was associated with higher infectious titres in cell-culture supernatants, in line with the higher viral loads observed among Alpha-infected patients. Interestingly, Beta and Gamma variants presented similar kinetic and viral load than the other non-Alpha-tested variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Viral Load , COVID-19/virology , Humans , Kinetics , Pandemics
SELECTION OF CITATIONS
SEARCH DETAIL